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Abstract
Delinquents are embedded in a network of relationships. Each delinquent decides in a non-
cooperative way how much delinquency effort he will exert. We characterize the Nash
equilibrium and derive an optimal enforcement policy, called the key-player policy. We then
extend our characterization of optimal single player network removal to optimal group removal,
the key group. We also characterize and derive a policy that targets links rather than players.
Finally, we endogenize the network connecting delinquents by allowing players to join the
labor market instead of committing delinquent offenses. The key-player policy turns out to be
much more complex because it depends on wages and on the structure of the network. (JEL:
A14, C72, K42, L14)

1. Introduction

Polls show that people regard crime and delinquency as the number one social
problem. As such, identifying the root causes of delinquent activity and designing
efficient policies against delinquency are two natural scopes for the economics
profession. About thirty years ago, the major breakthrough in the economic anal-
ysis of crime was the work of Becker (1968), in which delinquents are rational
individuals acting in their own self-interest. In deciding to commit a delinquency,
delinquents weigh the expected costs against the expected benefits accruing from
this activity. The goal of the criminal justice system is to raise expected costs of
delinquency to offenders above the expected benefits. People will commit crimes
only so long as they are willing to pay the prices society charges.
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There is by now a large literature on the economics of crime. Both theoretical
and empirical approaches have been developed over the years in order to better
understand the costs and benefits of crime (see, for instance, the literature surveys
by Garoupa (1997) and Polinsky and Shavell (2000)). In particular, the interaction
between the “delinquency market” and the other markets has important general
equilibrium effects that are crucial if one wants to implement the most effective
policies.1 The standard policy tool to reduce aggregate delinquency that is com-
mon to all these models relies on the deterrence effects of punishment, that is, the
planner should increase, uniformly, punishment costs.

It is, however, well established that delinquency is, to some extent, a group
phenomenon, and the source of crime and delinquency is located in the intimate
social networks of individuals (see, e.g., Sutherland 1947, Sarnecki 2001 and Warr
2002). Indeed, delinquents often have friends who have themselves committed
several offenses, and social ties among delinquents are seen as a means whereby
individuals exert an influence over one another to commit crimes.2 In fact, not
only friends but also the structure of social networks matters in explaining an indi-
vidual’s own delinquent behavior. In adolescents’ friendship networks, Haynie
(2001) and Calvó-Armengol, Patacchini, and Zenou (2005, 2009) show that indi-
vidual Bonacich centrality (a standard measure of network centrality) together
with the density of friendship links condition the delinquency–peer association.
This suggests that the underlying structural properties of friendship networks must
be taken into account to better understand the impact of peer influence on delin-
quent behavior and to address adequate and novel delinquency-reducing policies.

In this paper, we develop an explicit delinquent network game3 where indi-
viduals decide non-cooperatively their crime effort by using the network model
developed by Ballester, Calvó-Armengol, and Zenou (2006) to the case of delin-
quent networks. For this purpose, we build on the Beckerian incentives approach
to delinquency behavior but let the cost to commit delinquent offenses to be
determined, in part, by one’s network of delinquent mates. We then consider
different policies that aim at reducing the total crime activity in a delinquent
network. Compared to Ballester, Calvó-Armengol, and Zenou, the present paper
has the following innovations: (i) the payoff function contains a component with
global strategic substitutes and is parameterized so that the effects of different
parameters can be easily interpreted; (ii) it compares the effects of an increase in

1. For example, Burdett, Lagos, and Wright (2003) study the interaction between crime and unem-
ployment, and Verdier and Zenou (2004) analyze the impact of the land market on criminal activities.
Most of these models generate multiple equilibria that can explain why identical areas may end up
with different amounts of crime.
2. The empirical evidence collected so far in the economics literature suggests that peer effects are,
indeed, quite strong in criminal decisions. See, for instance, Glaeser, Sacerdote, and Scheinkman
(1996), Ludwig, Duncan, and Hirschfield (2001), Patacchini and Zenou (2008), Damm and Dustmann
(2008), and Bayer, Hjalmarsson, and Pozen (2009).
3. For recent literature surveys on networks, see Goyal (2007) and Jackson (2008).
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“punishment” and other standard crime policies with a “key player” policy; (iii) it
analyzes a “key group” and a “key link” policy, in addition to the “key player”
policy; (iv) it shows that finding a “key group” is an NP-hard problem and pro-
vides a simple (greedy) algorithm and a bound for the degree of suboptimality of
the algorithm’s solution; (v) it characterizes the equilibrium of a so-called “entry
game” where individuals decide whether to continue participating in a delinquent
network (in their previously allotted position) or take some job in the outside
world; and (vi) it analyzes the “key player” and “key group” policies in the “entry
game.” To the best of our knowledge, this is the first paper analyzing policies
aiming at reducing crime in an explicit social network framework.4

2. Delinquency Network Outcomes

2.1. The Delinquency Network Game

The network. A network g is a set of ex ante identical individuals N =
{1, . . . , n} and a set of links between them. We assume n ≥ 2. The n−square
adjacency matrix G of a network g keeps track of the direct connections in this
network. By definition, players i and j are directly connected in g if and only if
gij = 1 (denoted by link ij ), and gij = 0 otherwise. Links need not be reciprocal,
so that we may have g12 = 1 and g21 = 0. Only in some of our results will we
explicitly impose this symmetry. By convention, gii = 0. Thus G is (0, 1)−matrix
with zeros on its diagonal.

The delinquency decision game. We focus on petty crimes so we consider delin-
quents rather than criminals.5 Consider some delinquency network g. Delinquents
in the network decide how much effort to exert. We denote by xi the delinquency
effort level of delinquent i, and by x = (x1, . . . , xn) the population delinquency
profile.

Following Becker (1968), we assume that delinquents trade off the costs and
benefits of delinquent activities to make their delinquency effort decision. The
expected delinquency gains to delinquent i are given by

ui(x,g) = yi(x)︸ ︷︷ ︸
proceeds

− pi(x, g)︸ ︷︷ ︸
apprehension

f︸︷︷︸
fine

. (1)

The individual proceeds yi(x) correspond to the gross delinquency payoffs
of delinquent i. Individual i gross payoff positively depends on i’s delinquency

4. Calvó-Armengol and Zenou (2004) proposed a network model of criminal activities but without
looking at policy issues.
5. It is well documented that social interactions and peer effects are stronger for petty crimes
than for other types of crimes (Glaeser, Sacerdote, and Scheinkman 1996; Jacob and Lefgren 2003;
Patacchini and Zenou 2008).
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involvement xi , and on the whole population delinquency effort x. The proceeds
yi(x) indicate the global6 payoff interdependence. The cost of committing delin-
quency pi(x, g)f is also positively related to xi as the apprehension probability
increases with one’s involvement in delinquency, hitherto, with one’s exposure
to deterrence. In words, pi(x, g) reflects local complementarities in delinquency
efforts across delinquents directly connected through g.

The crucial assumption made here is that delinquents improve illegal prac-
tice while interacting with their direct delinquent mates. In other words, we
assume that the higher the criminal connections to a criminal and/or the higher the
involvement in criminal activities of these connections, the lower his individual
probability to be caught pi(x, g). The idea is as follows. There is no formal way of
learning to become a criminal, no proper “school” providing an organized trans-
mission of the objective skills needed to undertake successful criminal activities.
Given this lack of formal institutional arrangement, we believe that the most nat-
ural and efficient way to learn to become a criminal is through the interaction with
other criminals. Delinquents learn from other criminals belonging to the same net-
work how to commit crime in a more efficient way by sharing the know-how about
the “technology” of crime. In our model, we capture this local nature of the mecha-
nism through which skills are acquired by relating the individual probability to be
caught to the crime level involvement of one’s direct mates, and by assuming that
this probability decreases with the corresponding local aggregate level of crime.

This view of criminal networks and the role of peers in learning the technology
of crime is not new, at least in the criminology literature. In his very influential
theory of differential association, Sutherland (1947) locates the source of crime
and delinquency in the intimate social networks of individuals. Emphasizing that
criminal behavior is learned behavior, Sutherland argued that persons who are
selectively or differentially exposed to delinquent associates are likely to acquire
that trait as well.7 In particular, one of his main propositions states that when
criminal behavior is learned, the learning includes (i) techniques of committing the
crime, which are sometimes very complicated, sometimes very simple, and (ii) the
specific direction of motives, drives, rationalization, and attitudes. Interestingly,
the positive correlation between self-reported delinquency and the number of
delinquent friends reported by adolescents has proven to be among the strongest
and one of the most consistently reported findings in the delinquency literature
(for surveys, see Warr 1996 and Matsueda and Anderson 1998). In our model,
individuals learn illegal conduct from others but practice it alone.

Because in most of the papers cited (from the sociology and criminology lit-
eratures), selection and endogeneity issues are not properly addressed, we would

6. That is, across all criminals in the network.
7. Sutherland (1947) and Akers (1998) expressly argue that criminal behavior is learned from
others in the same way that all human behavior is learned. Indeed, young people may be influenced
by their peers in all categories of behavior—music, speech, dress, sports, and delinquency.
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like to provide some evidence on learning in crime from the economics literature
where these econometric issues are taken into account. Damm and Dustmann
(2008) investigate the following question: Does growing up in a neighborhood in
which a relatively high share of youth has committed crime increase the individ-
ual’s probability of committing crime later on? To answer this question, Damm
and Dustmann exploit a Danish natural experiment that randomly allocates par-
ents of young children to neighborhoods with different shares of youth criminals.
With area fixed effects, their key results are that one standard deviation increase in
the share of youth criminals in the municipality of initial assignment increases the
probability of being charged with an offense within the ages of 18–21 by 8 per-
centage points (or 23%) for men. This neighborhood crime effect is mainly driven
by property crime. Bayer, Hjalmarsson, and Pozen (2009) consider the influence
that juvenile offenders serving time in the same correctional facility have on each
other’s subsequent criminal behavior. They also find strong evidence of learning
effects in criminal activities since exposure to peers with a history of committing
a particular crime increases the probability that an individual who has already
committed the same type of crime recidivates with that crime.

There are clearly learning effects in crime. One may, however, argue that
although delinquents learn a lot from their best friends, the learning is not infinite;
so that after some time, friends do not provide any positive externalities that may
reduce the probability to be caught. This is clearly not true at least for delinquent
friendships. Indeed, the techniques and information about crime are not static and
are constantly evolving. For example, friends may help a delinquent to be more
efficient in shoplifting by explaining the new type of protection that has been
installed in a particular shop. This information may not be valid a year later if the
shop has changed its protection system. Friends can also tell a delinquent which
apartment has already been robbed so that this delinquent can avoid taking a risk
without getting many proceeds. Another interesting example is people selling
illegal DVDs on the street. They share knowledge based on experience (level of
activity) but they decide on their effort separately. To summarize, delinquents
who know each other can share information because they are friends (we take
this communication as given) even though they act separately in the delinquent
world.

For the sake of tractability, we restrict to the following simple expressions:

yi(x) = xi max

⎧⎨
⎩A − δ

n∑
j=1

xj , 0

⎫⎬
⎭ ,

pi(x,g) = p0xi max

⎧⎨
⎩1 − φ

n∑
j=1

gij xj , 0

⎫⎬
⎭ ,

(2)
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where A > 0, δ > 0 and φ ≥ 0. For the sake of simplicity, we take A = 1. We
assume that, at an equilibrium x∗,8

1 − δ

n∑
j=1

x∗
j ≥ 0 and 1 − φ

n∑
j=1

gij x
∗
j ≥ 0.

Then, by direct substitution, we can focus on the following utility function:

ui(x,g) = (1 − π)xi − δx2
i − δ

n∑
j �=i

xixj + πφ

n∑
j=1

gij xixj , (3)

where π = p0f is the marginal expected punishment cost for an isolated
delinquent. We assume throughout that π < 1. With these expression, we have

σij = ∂2ui(x,g)

∂xi∂xj

=
{
σ̄ = −δ + πφgij if gij = 1,
σ = −δ if gij = 0,

(4)

so that σij ∈ {σ , σ̄ }, for all i �= j with σ ≤ 0. The parameter δ ≥ 0
measures the intensity of the global interdependence on gross delinquency pay-
offs. Here, individual delinquency efforts are global strategic substitutes. The
optimal delinquency effort of a given delinquent thus decreases with the delin-
quency involvement of any other delinquent in the network. The expression
πφ > 0 captures the local strategic complementarity of efforts on the appre-
hension probability. This expression is non-zero only when gij = 1, that is,
when delinquents i and j are directly linked to each other. Finally, note that
∂2ui(x,g)/∂x2

i = −2δ < 0.

2.2. Nash Equilibrium

Let Gk be the kth power of G, with coefficients g
[k]
ij , where k is some integer.

The matrix Gk keeps track of the indirect connections in the network: g
[k]
ij ≥ 0

measures the number of walks of length k ≥ 1 in g from i to j . In particular,
G0 = I. Given a scalar a ≥ 0 and a network g, we define the following matrix:

M(g, a) = [I−aG]−1 =
+∞∑
k=0

akGk.

8. This assumption is satisfied, for instance, when δ ≥ φ or π ≥ 1/2.
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We define the vector of Katz–Bonacich9 centralities of parameter a in g as follows:

b(g, a) = [I−aG]−1 · 1, (5)

where 1 is the n-dimensional vector of ones. For all y ∈IRn, y = y1+· · ·+yn is the
sum of its coordinates. Define b(g, θ) = ∑i=n

i=1 bi(g, θ), denote θ = πφ/δ and
let ρ(g) be the spectral radius of the adjacency matrix G. We have the following
result:

Proposition 1. (Ballester, Calvó-Armengol, and Zenou 2006) If θρ(g) < 1,
then there exists a unique Nash equilibrium x∗, which is interior, and given by

x∗ = 1 − π

δ[1 + b(g, θ)]b(g, θ). (6)

The equilibrium Katz–Bonacich centrality measure b(g, θ) is thus the rel-
evant network characteristic that shapes equilibrium behavior. The condition
θρ(g) < 1 relates the payoff function to the network topology and guarantees that
local complementarities are not too large compared to own concavity. When this
condition holds,10 (and only then), the matrix [I−θ G]−1 can be developed into
the infinite sum

∑
k≥0 θkGk , which brings the Katz–Bonacich centrality measure

into the picture.

2.3. Comparative Statics

In Proposition 1, the individual and aggregate delinquency levels depend on the
underlying network g connecting them through the adjacency matrix G in equa-
tion (6). The next result establishes a positive relationship between the equilibrium
aggregate delinquency level and the network pattern of connections.

We write g ⊂ g′ to denote that the set of links in g′ contains the links in g,
that is, for all i, j , g′

ij = 1 if gij = 1.

Proposition 2. (Ballester, Calvó-Armengol, and Zenou 2006) Let g and g′ be
symmetric networks such that g ⊂ g′. If θρ(g′) < 1, then, in equilibrium, the
total delinquency level under g′ is strictly higher than that under g.

Consider two nested networks g and g′ such that g ⊂ g′. Then, either g

and g′ connect the same number of delinquents but there are more direct links

9. Due to Katz (1953) and Bonacich (1987).
10. Testing the impact of the Katz–Bonacich centrality measure on educational and criminal out-
comes in the United States, Calvó-Armengol, Patacchini, and Zenou (2005, 2009) found that only
18 out of 199 networks (i.e., 9%) do not satisfy this condition.
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between them in g′ than in g, or g′ brings additional individuals into the pool of
delinquents already connected by g, or both. Proposition 2 shows that the density
of network links and the network size (or boundaries) affect positively aggregate
delinquency, a feature often referred to as the social multiplier effect.11

3. Delinquency Network Policies

3.1. Finding the Key Player

The standard policy tool to reduce aggregate delinquency relies on the deter-
rence effects of punishment (see for example Becker 1968). Formally, an increase
in π , which translates into an increase in θ , amounts to hardening punishment
costs borne by delinquents. Our previous results associate a distribution of delin-
quency efforts across delinquents to any delinquency network connecting them.
In this case, an increase in θ affects all delinquency decisions simultaneously
and shifts the whole delinquency efforts distribution to the left, thus reducing
the average (and the aggregate) delinquency level. In our model, though, delin-
quent behavior is tightly rooted in the network structure. When all delinquents
hold homogeneous positions in the delinquency network, they all exert a similar
delinquency effort. In this case, the previously mentioned policy, which tackles
average behavior and does not discriminate among delinquents depending on
their relative contribution to the aggregate delinquency level, may be appropriate.
However, if delinquents hold very heterogeneous positions in the delinquency
network, they contribute very differently to the aggregate delinquency level. The
variance of efforts is higher. In this case, we could expect a sharp reduction in
average delinquency by directly removing a delinquent from the network and thus
altering the whole distribution of delinquency efforts, not just shifting it. A tar-
geted policy that discriminates among delinquents depending on their location in
the network may then be more appropriate. The key player is the one inducing the
highest aggregate delinquency reduction. Formally, the planner’s problem is the
following:

max{x∗(g) − x∗(g−i ) | i = 1, . . . , n},
which, when the original delinquency network g is fixed, is equivalent to:

min{x∗(g−i ) | i = 1, . . . , n} (7)

From Ballester, Calvó-Armengol, and Zenou (2006), we now define a new
network centrality measure d(g, θ) that will happen to solve this compromise.

11. See, for instance, Glaeser, Sacerdote, and Scheinkman (2003), and references therein.
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Figure 1. Bridge network with eleven delinquents.

Definition 1. For all network g and for all i, the measure

di(g, θ) = b(g, θ) − b(g−i , θ) = bi(g, θ)2

mii(g, θ)
(8)

accounts for the number of walks that crosses player i in the network i.

The intercentrality measure di(g, θ) of delinquent i is the sum of i’s central-
ity measures in g, and i’s contribution to the centrality measure of every other
delinquent j �= i also in g. It accounts both for one’s exposure to the rest of the
group and for one’s contribution to every other exposure.

Proposition 3. (Ballester, Calvó-Armengol, and Zenou 2006) A player i∗ is
the key player that solves equation (7) if and only if i∗ is a delinquent with the
highest intercentrality in g, that is, di∗(g, θ) ≥ di(g, θ), for all i = 1, . . . , n.

Observe that the key player policy is such that the planner perturbs the network
by removing a delinquent and all other delinquents are allowed to change their
effort after the removal but the network is not “rewired,” that is, individuals do not
optimally change their relationships (links) with their friends. This assumption
can be justified for two reasons. First, it would be extremely difficult to solve a
network formation problem every time a player is removed. Second, in the context
of a short-term policy and because friendship relationships take longer to adjust
than the level of criminal activity, it is reasonable to assume that delinquents
do not change their friends when one of them is removed even though they can
modify their crime activity.

Example 1. Consider the network g in Figure 1 above.
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Table 1. Bonacich centrality versus key player.

θ 0.1 0.2

Player Type xi bi di xi bi di

1 0.077 1.75 2.92 0.072 8.33 41.67∗
2 0.082∗ 1.88∗ 3.28∗ 0.079∗ 9.17∗ 40.33
3 0.075 1.72 2.79 0.067 7.78 32.67

∗ = column highest value.

We distinguish three different types of equivalent players in this network:
Type-1 player, which is player 1; type-2 players, which encompass players 2, 6,
7, and 11, and type-3 players, which are players 3, 4, 5, 8, 9, and 10. Table 1
computes, for delinquents of types 1, 2, and 3, the value of delinquency efforts xi ,
centrality measures bi(g, θ), and intercentrality measures di(g, θ) for different
values of θ and with δ = φ = 1. In each column, a variable with a star identifies
the highest value.12

First note that type-2 delinquents always display the highest b-centrality mea-
sure. These delinquents have the highest number of direct connections. Besides,
they are directly connected to the bridge delinquent 1, which gives them access to
a very wide and diversified span of indirect connections. Altogether, they are the
most b-central delinquents. For low values of θ , the direct effect on delinquency
reduction prevails, and type-2 delinquents are the key players—those with highest
intercentrality measure di . When θ is higher, though, the most active delinquents
are no longer the key players. Now, indirect effects matter a lot, and eliminat-
ing delinquent 1 has the highest joint direct and indirect effect on aggregate
delinquency reduction.

3.2. Comparing Policies

3.2.1. The Cost of Finding the Key Player. Given a delinquency network g and
a punishment cost θ , the ranking of delinquents according to their individual
intercentrality measure di(g, θ) provides a criterion for the selection of an opti-
mal target in the network. Implementing such a network-based policy obviously
has its costs. Indeed, the computation of the intercentrality measures relies on
the knowledge of the adjacency matrix of the delinquency network. This matrix
is obtained from sociometric data that identify the network links between delin-
quents. It is important to note that sociometric data on delinquency are available
in many cases. For instance, Haynie (2001) and Calvó-Armengol, Patacchini,
and Zenou (2005) use friendship data to identify delinquent peer networks for
adolescents in 134 schools in the U.S. that participated in an in-school survey in

12. We can compute the highest possible value for θ compatible with our definition of centrality
measures, equal to θ̂ = 2/(3 + √

41) � 0.213.
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the 1990s. Sarnecki (2001) provides a comprehensive study of co-offending rela-
tions and corresponding network structure for football hooligans and right-wing
extremists in Stockholm. Baker and Faulkner (1993) reconstruct the structure of
conspiracy networks for three well-known cases of collusion in the heavy elec-
trical equipment industry in the U.S. In all these cases, one may directly use the
available data to compute the intercentrality measures.

In some other cases, though, ad hoc information gathering programs have to
be implemented. Interestingly, Costebander and Valente (2003) show that cen-
trality measures based on connectivity (rather than betweenness), such as b and
d , are robust to mispecifications in sociometric data, and thus open the door to
estimations of centrality measures with incomplete samples of network data. This,
obviously, reduces the cost of identifying the key player. The idea behind these
results is that these measures take into account all walks in the network. Thus,
generally the centrality of a player is not determined only by his direct links but by
the complete structure of the network. In this sense, the probability that a missing
link affects the choice of the most central/intercentral player is smaller than with
other types of measures. This difference turns significant the higher the value of
the density parameter θ since, in that case, higher order walks are also taken into
account in computing the centrality/intercentrality of a player.

3.2.2. Key Player Versus Random Target. To fully assess the relevance of the
key player delinquency policy, we also need to evaluate the relative returns from
following this network targeted policy. For this purpose, we compare the reduction
in aggregate delinquency following the elimination of the key player with respect
to the expected consequences when the target is selected randomly. For each
delinquent i in the delinquency network, define

ηi(g) = n
x∗(g) − x∗(g−i )∑n

j=1[x∗(g) − x∗(g−j )] .

This is the ratio of returns (in delinquency reduction) when i is the selected target
versus a random selection with uniform probability for all delinquents in the
network.

Denote by d̄(g, θ) the average of the intercentrality measures in network g,
and by σd(g, θ) the standard deviation of the distribution of these intercentrality
measures. The following result establishes a lower bound on the ratio of returns
in delinquency reduction when the key player is removed.

Proposition 4. Let i∗ be the key player in g for a given θ . Then,

ηi∗(g) ≥ 1 + σd(g, θ)

d̄(g, θ)
.

See Ballester, Calvó-Armengol, and Zenou (2009) for the proof.
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The relative gains from targeting the key player instead of operating a
selection at random in the delinquency network increase with the variability
in intercentrality measures across delinquents as captured by σd(g, θ). In other
words, the key player prescription is particularly well-suited for networks that
display stark location asymmetries across nodes. In these cases, it is more likely
that the relative gains from implementing such a policy compensate for its relative
costs.

3.2.3. Key Player Versus Standard Deterrence Policy. Consider the key player
removal policy. When a delinquent is removed from the network, the inter-
centrality measures of all the delinquents that remain active are reduced, that
is, dj (g−i∗, θ) ≤ dj (g, θ), for all j �= i∗, which triggers a decrease in delin-
quency involvement for all of them. Moreover, when delinquent i∗ is removed
from the delinquency network, the corresponding ratio of aggregate delinquency
reduction with respect to the network centrality reduction is an increasing function
of the intercentrality measure di(g, θ) of this delinquent. Formally,

∂

∂di(g, θ)

[
x∗(g) − x∗(g−i )

b(g, θ) − b(g−i , θ)

]
> 0.

In words, the target policy displays amplifying effects, and the gains following the
judicious choice of the key player (the one with highest intercentrality measure)
go beyond the differences in intercentrality measures between this player and any
other delinquent in the network.

Consider standard deterrence (“uniform”) policies that consist in increases
in θ . In particular, consider policies increasing π (i.e. increase in the fine f ), or
reducing δ, or increasing φ.

Observe first that an increase of π above 1 would induce an equilibrium with
no delinquency. The problem is that the condition ρ(g)πφ/δ < 1 in Proposition
1 that guarantees the existence of a unique interior Nash equilibrium and that the
Bonacich centrality measure is well defined may no longer be satisfied. Moreover,
we are interested in situations where it is costly for the authorities to increase π (or
to implement any other policy). A thorough analysis of how the costs of different
policies affect the choice of the “right” policy is, however, beyond the scope of
this paper.

Let us now focus on the effect of π , δ, or φ on x∗ = 1T .x∗, the equilibrium
aggregate delinquency activity. Observe that we are dealing with the situation of a
unique equilibrium under Proposition 1. From expression (6), it is easy to obtain

x∗ = (1 − π)b(g, θ)

δ[1 + b(g, θ)] . (9)

It is then straightforward to show that the aggregate delinquency activity x∗ is
increasing in the local complementarity parameter φ but is decreasing in the
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global substitutability parameter δ. However, the effect of π on x∗ is ambiguous
and given by

∂x∗

∂π
= − x∗

1 − π︸ ︷︷ ︸
direct negative effect

+ φ

δ

∂x∗

∂θ︸ ︷︷ ︸
indirect positive effect

,

where

∂x∗

∂θ
= (1 − π)

δ

1

[1 + b(g, θ)]2

∂b(g, θ)

∂θ
> 0.

The impact on punishment results from the combination of two effects that work
in opposite directions. First, the individual probability to be apprehended, and
thus the punishment costs borne by each delinquent, increases with π . This is a
direct negative effect. Second, when π increases, delinquents react strategically
by acquiring a better delinquency technology to thwart the higher deterrence they
now face. The improvement in delinquency technology stems from more intense
know-how inflows and transfers in the delinquency network. Each delinquent
centrality measure bi(g, θ) increases, which translates into a higher delinquency
involvement for each delinquent. This is an indirect positive effect on aggregate
delinquency that mitigates the direct negative effect. In order to better understand
this last effect, we run numerical simulations in Ballester, Calvó-Armengol, and
Zenou (2009) for δ = 0.1 and for which the maximum value of π is consistent
with the spectral condition of Proposition 1. We consider two cases: φ = 0.8 and
φ = 0.1. When the network is more connected (φ = 0.8), namely, both direct and
direct links matter very much, increasing punishment π increases total delinquent
activity because the indirect positive effect dominates the direct negative effect.
When φ = 0.1, meaning that friends of friends have not that much influence
on delinquents, then the network effect becomes unimportant compared to the
deterrence effect and an increase in punishment π reduces total delinquency
x∗. These results imply that the policymaker should be aware of the degree of
connectivity of the network if it is to implement a deterrence policy aiming at
reducing delinquent activity. In particular, if a network of delinquents is dense and
well connected so that φ is high, it should be clear that a key-player policy will
be more effective in reducing total delinquency than an increase in punishment.

3.3. From the Key Player to the Key Group

So far, we have characterized optimal single player removal from the network to
reduce delinquency, a key player. We now characterize optimal group removal
from the network, a key group.



Ballester et al. Delinquent Networks 47

3.3.1. Finding the Key Group of Players. We wish to eliminate a group of s

players from the current population. If we remove a set S of players such that
|S| = s, the network of delinquents becomes g−S . The problem is therefore to
minimize x∗(g−S) by picking the adequate set S from the population. Formally,
the planner maximizes the total change in delinquent activity:

max|S|≤s
x∗(g) − x∗(g−S),

which is equivalent to

min|S|≤s
x∗(g−S). (10)

This is a finite optimization problem, which admits at least one solution. Let
S∗ be a solution to expression (10). We call the set S∗ a key group of the game.
Removing S∗ from the game has the highest overall impact on delinquency.

In the following, we assume that the condition on eigenvalue in Proposition
1 holds in the game, guaranteeing the uniqueness of Katz–Bonacich solutions in
any game induced by a subset of players. The reason is that ρ(g) ≥ ρ(g−S).
As a consequence, if b(g, θ) is well-defined and non-negative (as implied by the
condition in Proposition 1), so is b(g−S, θ).

Definition 2. The group intercentrality of S in the network g is

dS(g, θ) = b(g, θ) − b(g−S, θ).

In fact, dS(g, θ) is the weighted number of walks in g crossing some agent
in S. The case s = 1 obviously corresponds to the case of finding the key player
in the delinquency network. As with the key player, it turns out that diminishing
the aggregate delinquent activity reduces to choose the set with the highest group
intercentrality:

max|S|=s
dS(g, θ), (11)

that is, the solution13 of (11) is S∗ ⊆ N such that dS∗(g, θ) ≥ dS(g, θ), for all
S ⊆ N with |S| = s.

Remark 1. An equivalent formulation of the key group problem (11) is

max{i1,...,is}⊆N
di1(g, θ)+ di2(g−{i1}, θ)+ di3(g−{i1,i2}, θ) + · · · + dis (g−{i1,...,is−1}, θ),

(12)

where i1, . . . , is are different two by two.

13. Note that we restrict the maximization program to |S| = s, given that dS(g, θ) is obviously
increasing in the size of S.
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Table 2. Key groups of size 2.

Removed Group S dS(g, θ)

{2, 7}∗ 67.22
{2, 8} 64.01
{3, 8} 59.39
{1, 2} 56.66
{2, 6} 50.41
{2, 3} 46.96
{3, 4} 42.15

∗ = column highest value.

In words, the key group maximizes the sum of the individual intercentrality
measures of its members across the networks obtained through sequential removal
of these members.14 The idea behind this expression is as follows. We must
eliminate a set of players S = {i1, . . . , is} in order to minimize the total number
of weighted walks in the network, b(g−S, θ). After deleting player i1, the resulting
number of walks is b(g, θ) − di1(g, θ). Now, the expression di2(g−i1, θ) counts
the number of walks that hit agent i2 once agent i1 has been eliminated, so that
we are not counting the same walk twice. Thus, b(g, θ)−di1(g, θ)−di2(g−i1, θ)

is the remaining set of walks after eliminating players i1 and i2, keeping in mind
that we only want to count each walk once. By the previous argument, also note
that the remaining set of weighted walks is the same if we change the order of
deletion of these two players, that is:

b(g, θ) − di1(g, θ) − di2(g−i1, θ) = b(g, θ) − di2(g, θ) − di1(g−i2, θ).

Extending this argument to the rest of the players in S, we obtain expression (12).

Example 2. Consider again the network g in Figure 1 with 11 delinquents
and a decay factor θ = 0.2 and consider the case where the required group size
is s = 2. Table 2 shows the values of group intercentrality dS(g, θ) for each
possible subset S of size 2 when θ = 0.2. For the sake of simplicity, subsets that
yield the same network architecture when they are removed are considered as
equivalent.

The key group is {2, 7}, that is, a set of two maximally connected nodes (with
five direct contacts each), both connected to the intercentral player 1, and each
at a different side of this player. This subset solves the following optimization
problem:

max
i,j

d{i,j}(g, θ) = max
i,j

(di(g, θ) + dj (g−i , θ)).

14. Note that this sum is independent of the order in which nodes are removed.
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Suppose that we were to approximate the solution to this optimization prob-
lem with a greedy heuristic procedure that sequentially picks up the player that
maximizes the individual intercentrality at each step. Formally, let

i∗1 = arg max
i∈N

di(g, θ)

and then, at each step 2 ≤ t ≤ s, choose the player i∗t with maximum inter-
centrality in the network where the previous players have been deleted, that
is,

i∗t ∈ arg max
{
di(g−{i∗1 ,...,i∗t−1}, θ) : i ∈ N\{i∗1 , . . . , i∗t−1

}}
breaking possible ties arbitrarily. This greedy algorithm first eliminates player
1, and then any other remaining player (after player 1 has been removed, all the
other players have identical positions in the network). Thus, the algorithm returns
a group which is not optimal: There are other groups that are better candidates
than {1, 2}. Indeed, in this example, player 1 is not only very intercentral, but
also his intercentrality is very much correlated with the intercentrality of others.
Hence, being greedy and eliminating it at the first stage reduces the chance of
finding highly central players at further stages. And, in fact, player 1 is not part
of the key group!

Nevertheless, we have obtained a relatively accurate approximation for the
result by a simple greedy algorithm, instead of choosing among all possible pairs
of agents. Note that, in this example, the error of this approximation is

d{2,7}(g, θ) − d{1,2}(g, θ)

d{2,7}(g, θ)
≈ 16%.

In fact, when s = 2, this error can be at most 25%. In the next section devoted to
algorithmic considerations, we discuss this issue more generally.

3.3.2. Algorithmic Considerations. We prove that the key group problem has
an inherent complexity that suggests the use of approximation algorithms. In
particular, we study the performance of a greedy procedure where the optimal
group is constructed by iteratively choosing an optimal vertex from the network.
For a description of NP-hard problems and properties, see Garey and Johnson
(1978) and Ballester (2004).

Now, we show that the key group problem is NP-hard, even when we want
to completely disrupt the game. First, note that if we were to implement a “brute-
force” basic algorithm to find a key group of s players, we would have to step over
all possible

(
n
s

)
groups of players and compute each particular contribution to the

game. This combinatorial procedure may involve up to an exponential number of
steps in n. The computational complexity here is mainly combinatorial, that is,
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although computing the contribution of a given group to the activity of the game
is computationally tractable, the fact that this task has to be done an exponential
number of times (in the worst case) makes the problem potentially intractable.
NP-hardness relates to the difficulty of computationally solving a particular class
of problems. Hence, by showing that the key group problem is NP-hard, we show
that there is no possible sophisticated algorithm such that, given any network, will
return the exact key group in reasonable time.15 This means that the key group
problem is a NP-hard problem, from the combinatorial perspective. Nevertheless,
we will show herein that we can efficiently approximate it.

Proposition 5. The problem of finding a key group in a network g is NP-hard.

See Ballester, Calvó-Armengol, and Zenou (2009) for the proof.

Because the computational complexity inherent to the key group selection is
high, it is suitable to use algorithmic approximations in order to solve real-life
problems with large networks.

Consider a greedy algorithm that sequentially eliminates in s stages the player
with highest intercentrality, that is, let SG = {iG1 , . . . , iGs } such that for all t =
1, . . . , s, player iGt is the most intercentral in g−St where St = {iG1 , . . . , iGt }. We
have the following result.

Proposition 6. The key group problem can be approximated in polynomial-
time by the use of a greedy algorithm, where, at each step t , expression (8) is used
to find the agent iGt who will become a member of the approximated key group
SG. The error of the approximation can be bounded as follows.

ε ≡ dS∗(g, θ) − dSG(g, θ)

dS∗(g, θ)
<

1

e
≈ 36.79%.

See Ballester, Calvó-Armengol, and Zenou (2009) for the proof.

This proposition shows that the error of approximation of using a greedy
algorithm instead of solving the key group problem directly is at most 36.79%.16

If the approximation error is over 30% in most situations then it would be difficult
to claim that this result provides a good approximation. In Ballester, Calvó-
Armengol, and Zenou (2009), we provide some numerical simulations for 100
different possible networks and for n = 10 and n = 15, and show that the relative

15. This fact is conjectured by nearly all computer scientists who believe that there is no such algo-
rithm for solving any NP-hard problem. A simple reason for this is that, after decades of continuous
search, no one has found an efficient algorithm for solving any NP-hard problem.
16. As Nemhauser, Wolsey, and Fisher (1978) have showed, the error bound obtained is tight.
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error of approximation ε is really small, at most 1.7%. Therefore, we are confident
that the use of the greedy procedure can be guaranteed to provide a fairly good
approximation SG for the true solution S∗ of the problem.

3.4. Finding the Key Link

Let us now focus on a different crime policy that targets links rather than individ-
uals. The aim of this policy is to choose how to optimally remove a link (or a set of
links) between two individuals in order to minimize the total delinquency level. In
some situations, the limitation of resources or the nature of the problem requires
to optimally choose among the set of dependencies among players. For instance,
a social planner would like to optimally reduce the (communication) externalities
among delinquents subject to a restriction in the number r of bilateral influences
that can be targeted. This situation can be interpreted as a problem of optimally
removing a set of links from the network.

Let us illustrate this policy with real-world examples. As stated previously, a
link removal means a disruption of the communication between two delinquents.
For instance, when a policeman is watching the street, he is somehow disrupting
the possible communication between delinquents from the same neighborhood (a
link can be understood as communication in a particular place). This policeman
is not, however, avoiding communication with other delinquents somewhere else.
Another example is to put a delinquent teenager in another school where there
are fewer delinquents. By doing so, this delinquent will stop his activities and
communication with other delinquents in the older school. In this section, we
will not compare link-removal and player-removal policies because they depend
on the costs for the policymaker, and we are not dealing with this issue. The key-
link policy should, however, be understood as closely related to the key-player
policy because the removal of a player implies the removal of his links plus the
removal of the isolated player that remains. Removing a set of links is somewhat
more flexible because the policymaker can target links from different players.

More formally, for g′ ⊂ g, let lg′(g, θ) be the number of walks in g (weighted
by θ ) that use some edge in g′. This is the contribution of g′ to the total connectivity
of g.

Suppose that we need to maximize the change in network activity after remov-
ing at most r links. Our best choice will consist of r links from the set of all possible
links not present in g. Formally, we need to solve

max
g′⊆g

{lg′(g, θ) : |g′| ≤ r}.

Consider again the bridge network described in Figure 1. As in the case
of the key player, even when r = 1, the optimal choice can depend on the
strength of complementarities, as shown in Table 3. For moderate values of θ
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Table 3. Removing a link and reduction in Bonacich centralities.

Removed link {i, j} Reduction in b(g, 0.1) Reduction in b(g, 0.22)

{1,2} 0.59 185.99∗
{2,6} 0.63∗ 180.84
{2,3} 0.58 164.37
{3,4} 0.53 148.95

∗ = column highest value.

(i.e., θ = 0.1), the key link to be removed is the one between the most central
nodes (i.e., delinquents 2 and 6). However, for higher values of θ (i.e., θ = 0.22),
intermediate positions become more relevant and the key link is part of the bridge
between the two clusters in the network (i.e., delinquents 1 and 2).

Let us now derive more general results. We first deal with the case of directed
links (non-symmetric networks) because it provides an easier expression of our
result. In this case, the planner has more degrees of freedom because it can target
specific directed links. Let h ≡ g\{ij} be the network g where gij is set to
zero. The following relation holds in this class of networks, for all pair of agents
k, l ∈ N :

mkl(g, θ) − mkl(h, θ) = θmki(h, θ)mjl(g, θ). (13)

That is, all walks from k to l arrive at i for the first time before crossing ij (so
this set of walks occurs in the network h), cross the link ij and then continue
from j to l in the network g. Let lij (g, θ) be the total contribution of link ij to
the centrality of g:

lij (g, θ) ≡
∑

k,l∈N

(mkl(g, θ) − mkl(h, θ)).

Let b̃i (g, θ) be the Katz–Bonacich in-centrality of player i, namely, the
weighted sum of the value of walks entering node i in the network g:

b̃i (g, θ) =
n∑

j=1

mji(g, θ).

Lemma 1. The contribution of a single directed link ij ∈ g to the total Katz–
Bonacich centrality of the network g is given by

lij (g, θ) = θ
b̃i(g, θ)bj (g, θ)

1 + θmji(g, θ)
. (14)

See Ballester, Calvó-Armengol, and Zenou (2009) for the proof.
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This expression reflects the asymmetry of players i and j under the assump-
tion of directed links. The effect of a directed link ij depends roughly on the
in-centrality of player i and the out-centrality of player j .

When links are undirected, the following expression allows us to compute
the contribution of a single link ij ∈ g to the total Katz–Bonacich centrality of
the network g. The proof is omitted, being similar to the case of directed links.

Lemma 2. The contribution of a single undirected link ij ∈ g to the total
Katz–Bonacich centrality of the network g is given by

lij (g, θ) = θ(bi(h, θ)bj (g, θ) + bi(g, θ)bj (h, θ))

=θ
2bi(g, θ)bj (g, θ)(1+θmij (g, θ))−θ

[
b2
i (g, θ)mjj (g, θ)+b2

j (g, θ)mii(g, θ)
]

[1+θmij (g, θ)]2−θ2mii(g, θ)mjj (g, θ)
.

(15)

In order to provide an interpretation, we take a moderate θ . Then, lij (g, θ)

is proportional to bi(g, θ)bj (g, θ). This means that, for moderate values of θ ,
the key link is the one connecting any two nodes with highest Katz–Bonacich
centrality. This was the case in the earlier example where the link {2, 6} was
chosen when θ = 0.1.

Expressions (14) and (15) have obvious advantages, as expression (8) does
in the case of the key player. We can compute the contribution of any link ij from
the current data M(g, θ) without having to recompute an inverse M(g\{ij}, θ)

for each ij ∈ g. These operations are clearly cheaper than the computation of an
inverse. This fact becomes critical if we are to approximate the optimal interaction
set. The reason is that the function lg′(g, θ) is submodular in g′ so that we can
iteratively find the maximum of lij (g, θ) using equations (14) or (15) to obtain
quickly a good approximation of the problem.

Proposition 7. The key interaction set problem can be approximated in
polynomial-time by the use of a greedy algorithm where, at each step, expres-
sion (14) or (15) is used to find the link ij (with highest lij (g, θ)) that will become
a member of the approximated key interaction set. The error of the approximation
can be bounded as follows:

ε ≡ lg∗(g, θ) − lgG(g, θ)

lg∗(g, θ)
<

1

e
≈ 36.79%.
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4. Joining Delinquency Networks

4.1. Equilibrium Networks

In this section, we extend our game in order to allow individuals to choose whether
they want to participate in the crime market or not in the first stage. So far, we
have assumed that the delinquency network was given. In some cases, though,
delinquents may have opportunities outside the delinquency network. In par-
ticular, petty delinquents may consider entering the labor market and giving up
delinquent activities. Here, we expand the model and endogenize the delinquency
network by allowing delinquents to take a binary decision on whether to stay in the
delinquency network or to drop out of it.17 Formally, we consider the following
two-stage game.

Fix an initial network g connecting agents. In the first stage, each agent
i = 1, . . . , n decides to enter the labor market or to become a delinquent. This is
a simple binary decision. These decisions are simultaneous. Let ci ∈ {0, 1} denote
i’s decision, where ci = 1 (respectively, ci = 0) stands for becoming a delinquent
(respectively, entering the labor market), and denote by c = (c1, . . . , cn) the
corresponding population binary decision profile. We assume that agents entering
the labor market earn a fixed wage (nonnegative scalar) ω > 0. The payoff for
delinquents is determined in the second stage of the game. In the second stage,
delinquents decide their effort level, which depends on the first-stage outcome.

Definition 3. The extended game is a two stage game where in stage 1, each
player i ∈ N decides whether to participate (ci = 1) or not (ci = 0) to the crime
market, and in stage 2, the players play the game in gS ;18 The utilities are given
by

Ui(S, xS, g) =
{
ui(xS, gS) if i ∈ S,

ω otherwise.

We study the subgame perfect equilibrium in pure strategies of this extended
game.

Definition 4. The set S is supported in equilibrium if there exists a ω and a
subgame perfect equilibrium where the set of players who decide to participate is
S, given the outside option ω. S is also called an (equilibrium) participation pool
of the game at the wage level ω.

17. See Calvó-Armengol and Jackson (2004) for a similar endogenous game of network formation
in the context of the labor market, where the binary decision for agents is to enter the labor market
network or to drop out.
18. S is the set of players who decide to participate.
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Let E(ω) be the family of sets supported by ω at equilibrium in the extended
game. The following result characterizes the class of sets that can be supported
by some ω.

Proposition 8. Let S ⊆ N and θρ(g) < 1 for all j ∈ N\S. Then, the set S is
supported at equilibrium by the outside option ω if and only if

max
j∈N\S

bj (gS∪{j}, θ)

1 + b(gS∪{j}, θ)
≤ 1

1 − π

√
ωδ ≤ min

i∈S

bi(gS, θ)

1 + b(gS, θ)
.

See Ballester, Calvó-Armengol, and Zenou (2009) for the proof.

Remark 2. Whenever

ω >
(1 − π)2

4δ
,

all agents outside the delinquency pool is an equilibrium, that is, ∅ is supported
as an equilibrium by ω.

Whenever an equilibrium exists, multiplicity of equilibria is a natural outcome
of the extensive form game. This multiplicity can arise, for instance, from the
symmetric role of some agents in a network.19

4.2. Participation Game without Global Substitutability

Suppose that δ is small, that is, we have that the second-stage game is close
to a game with strategic complementarities. Let S be a participation pool (not
necessarily an equilibrium pool) at some wage ω. In this case, the payoff that an
agent i ∈ N\S obtains by joining S is equal to

x∗
i (gS∪{i}) =

(
1 − π

δ

)
bi(gS∪{i}, θ),

that is, it is proportional to its centrality in the network gS∪{i}.
Given that the outside option ω is fixed, it is clear that the two-stage game

is supermodular,20 in the sense that the payoffs of player i are increasing with

19. Two agents i and j are symmetric in a network whenever the network remains with the same
structure after exchanging their labels. In this case, if S is supported at equilibrium, i ∈ S and
j ∈ N\S, so is S ′ where i has been interchanged with j .
20. For a broad description of supermodular games and their applications, see Topkis (1998) and
Vives (2005).
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respect to participation decisions of other agents. Formally, for all S ⊆ T ⊆ N

and i ∈ N\T , it is clear that

bi(gS∪{i}, θ) ≤ bi(gT ∪{i}, θ)

because the right-hand side measures a higher number of walks.
This property ensures the existence of equilibrium for any wage ω, as

summarized by the following proposition.

Proposition 9. When δ is small, the extended game has at least one equilibrium
participation pool.

See Ballester, Calvó-Armengol, and Zenou (2009) for the proof.

One may be interested in providing all the possible equilibria of the game
when supermodularity holds. Echenique (2007) provides a useful tool to list all
the equilibria of a game with complementarities. The intuitive idea here is that
complementarity is low enough to allow for increasing differences in utility of
agents in their decisions to enter the participation pool.

4.3. Finding the Key Player with Criminal Participation Decision

Given that this game usually displays multiple subgame perfect equilibria in the
endogenous delinquency network game, we define x∗(g, ω) to be the maximum
aggregate equilibrium delinquency level when the delinquency network is g and
the labor market wage is ω. This delinquency level is equal to the total amount
of delinquency in the worst case scenario of maximum delinquency.

Consider some binary decision profile c. Let i be an active delinquent, that
is, ci = 1. Suppose that delinquent i switches his current decision to ci = 0, that
is, delinquent i drops out from the delinquency pool and enters the labor market
instead. The binary decision profile then becomes c − νi , and the new set of
active delinquents is C(c−νi ) = C(c)\{i}. The drop out of delinquent i from the
delinquency pool also alters the network structure connecting active delinquents,
as any existing direct link between i and any other delinquent in C(c) is removed.
The new network connecting active delinquents is then g(c)−i = g(c − νi ), and
the aggregate delinquency level becomes

x∗(c − νi ) = 1 − π

δ

b(g(c − νi ), θ)

1 + b(g(c − νi ), θ)
.

The key player problem acquires a different shape in the setting with endoge-
nous formation of delinquency pools. Initially, the planner must choose a player
to remove from the network. Then, players play the two-stage delinquency game.
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Table 4. Key player and criminal decision.

ω = 0.001 ω = 0.003

x∗(g−1, ω) 0.7843 0.7843
x∗(g−2, ω) 0.7847 0.7785
Key player 1 2

Final delinquency pool

First, they decide whether to enter the delinquency pool or not. Second, delin-
quents choose how much effort to exert. In this context, there is an added difficulty
to the planner’s decision. The removal of a player from the network affects the
rest of the players’ decisions to become active delinquents. This fact should be
taken into account by the planner in order to attain an equilibrium with minimum
total delinquency. The right choice of the key player should be based upon the
remaining delinquency pool that will result from that decision, that is, what the
remaining players will decide concerning their delinquent activities.

We show, with the help of an example, that there is no trivial geometric recipe
for the key player problem in this case.

Consider again the network in Figure 1 with 11 players. Recall that, when
θ = 0.2 and the network of delinquents is exogenously fixed (or, equivalently,
the outside option is ω = 0), the key player was the player acting as a bridge,
namely, delinquent 1. If we now consider the endogenous delinquency network
formation in the two-stage game, the results may differ. Indeed, for low wages,
player 1 is also the key player and the resulting equilibrium network is the whole
remaining network, that is, ten delinquents remain and are split into two fully
connected cliques of five delinquents. However, when ω becomes higher, delin-
quent 2 becomes the key player21 and the equilibrium network now encompasses
six different players. It consists of a clique of five fully intraconnected players
together with player 1.

These results are summarized in Table 4, which gives, for two different val-
ues of ω, the key player, the highest aggregate delinquency that results from
eliminating this key player, and the equilibrium delinquency network.

Intuitively, when outside opportunities are high enough, all players from
the same side of the player being removed do not have enough incentives to
enter the delinquency pool at the first stage of the game. Hence, we do not get
a “large” equilibrium with many players, and this constitutes an advantage for
the planner who will choose to delete player 2. This example implicitly explains
how one policy (providing a higher ω) increases the effectiveness of another
policy (choosing the key player) in order to reduce delinquency. These policies
are complementary from the point of view of their effects on total delinquency,

21. In fact, any player except player 1 is the key player for ω = 0.003.
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although we are aware that they may be substitute if we had considered a budget-
restricted planner who had to implement costly policies.

4.4. The Key-Group Problem with Criminal Participation Decision

In the simple case without outside option, the choice of the key group was based on
the contribution of that group to the connectivity (total Katz–Bonacich centrality)
of the network. In the context of games with criminal participation decision, an
additional criterion should be taken into account: the fact that a removal of some
players may induce further voluntary moves of other players in the network. Thus,
the choice of the optimal target can change accordingly, and differ from the usual
key group prescription when all players participate. We analyze the interplay
between the optimal target and an outside option that acts as a participation
threshold in the new game.

The issue of existence will be relaxed in this section by assuming that we
are dealing with a wage ω such that, for any subgame in the subnetwork gT ,
with T ⊆ N , there exists an equilibrium participation pool S supported by ω. On
the other hand, multiplicity of equilibria makes it difficult to adopt a particular
approach in order to assess the efficacy of a particular policy. In this paper, we
focus on a extreme approach where the removal of a set of players from the
network is evaluated by comparing the maximum equilibrium of the original
game and the resulting game, that is, outcomes with maximum total activity x∗.

Definition 5. Given an extended game with wage ω and T ⊆ N , the remaining
family after eliminating S is defined as

P(ω, S) = {T ⊆ N\S, T ∈ E(ω)}.
In words, a set T ⊆ N\S is in the remaining family after eliminating S

whenever T is a participating pool in the restricted extended game played in g−S .
This definition is just capturing the posterior behavior of players after S’s removal.

For a candidate set S to be eliminated, let Pm(ω, S) ∈ arg maxT ∈P(ω,S)

{b(gT , θ)} be a maximum equilibrium participation pool when the set S is elimi-
nated. It is a pool where the maximum activity is achieved. Then, the choice of a
key group S∗ of size s is

S∗ ∈ arg min|S|≤s
b(gPm(ω,S), θ).

Let us illustrate this with the network described in Figure 1. We study the
problem of eliminating one player (s = 1) when θ = 0.2. When we analyze the
extended game with criminal participation decision, it is crucial for the planner
to consider the possible transitions between different pools of delinquents. In
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Table 5. Group players and criminal decision.

g−1 g−2

Pool S ωL ωH b(gS, θ) ωL ωH b(gS, θ)

{2, 3, 4, 5, 6, 7, 8, 9, 10, 11} 0.00 12.50 50.00 − − −
{2, 3, 4, 5, 6} 0.50 12.50 25.00 − − −
{1, 6, 7, 8, 9, 10, 11} − − − 1.02 1.70 39.47
{1, 3, 4, 5, 6, 7, 8, 9, 10, 11} − − − 0.00 4.17 51.33
{1, 7, 8, 9, 10, 11} − − − 1.70 7.03 36.25
{7, 8, 9, 10, 11} − − − 7.03 12.50 25.00
{1, 3, 4, 5, 6} − − − 0.95 1.25 12.37
{3, 4, 5, 6} − − − 1.25 3.12 10.00

particular, there are now three effects that should be taken into account when
choosing the set of players to be removed:

1. A direct effect due to the reduction of their initial delinquent activity. The
choice is here biased towards the most Katz–Bonacich central players.

2. An indirect effect due to the (lower) incentives of the remaining players. In
this dimension, group-intercentrality is the relevant variable to consider.

3. A possible snowball effect because the removal of a player may induce a
process where the remaining players (sequentially) find it profitable to leave
the pool of delinquents and to participate in the labor market. This effect
depends on the magnitude of the outside option ω.

Table 5 summarizes the sets S that are sustainable in equilibrium for the games
played in g−1 (i.e., when delinquent 1 is removed) and g−2 (i.e., when delinquent
2 is removed), specifying the range [ωL, ωH ] of wages that support for each S an
equilibrium participating pool (we can have multiplicity of equilibria). We just
specify distinct (up to network isomorphism) equilibrium pools.

To illustrate the results given in this table, let us consider the case when
ω = 5. If delinquent 1 is removed then the highest equilibrium pool consists of
all delinquents but 1, that is N\{1} = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. This is exactly
the same choice as in the case without criminal participation decision, which is
based on the intercentrality index. If, on the contrary, delinquent 2 is removed then
for the wage ω = 5, it is easily seen that the maximum equilibrium pool becomes
{1, 7, 8, 9, 10, 11}. In other words, with the exception of 1, all the delinquents
directly connected to delinquent 2 find it not profitable to become delinquents
and instead prefer to participate in the labor market. As a result, when the wage
is ω = 5 and there is no criminal participation decision, then the key player is
delinquent 2 because its deletion from the network has the highest impact on
the incentives of other players to become delinquent. In other words, by deleting
delinquent 2 instead of delinquent 1, fewer individuals will become delinquent.
This will also lead to a larger decrease in the aggregate level of crime.
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If we now consider a much lower wage, say ω = 0.4, then removing delin-
quent 1 or 2 will have the same effect on individuals’ participation in criminal
activities. Indeed, in both cases, all individuals will find it profitable to be delin-
quent because when delinquent 1 is removed, {2, 3, 4, 5, 6, 7, 8, 9, 10, 11} will
be criminals in equilibrium, whereas, when delinquent 2 is removed, the equilib-
rium pool of delinquents is {1, 3, 4, 5, 6, 7, 8, 9, 10, 11}. This suggests that the
effectiveness of a key-player policy should not only be measured by the direct
and indirect effects on delinquent activities but also by the group interactions it
engenders in terms of participation to the labor market.
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